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ROBUST CONTROL DESIGN FOR THE ELEVATION AXIS STABILIZATION OF

THE M256E1 LONG GUN

V. R. Marcopoli, M. S. Ng, and C. R. Wells

General Dynamics Land Systems, 38500 Mound Road, Sterling Heights, MI 48312

A key feature of the Abrams tank is the ability to deliver precision fire during
on-the-move vehicle operation. The increased flexibility of a longer gun tube
presents a significant additional challenge to stabilization system design. To
address the increased difficulties of this problem, an approach to gun
stabilization is presented that uses modem robust control techniques to achieve
muzzle-pointing accuracy. Such control design methods are model-based, and
thus require an accurate mathematical description of the system dynamics.
Following a brief description of the model used, the control objectives of
performance and robustness are cast in a general framework that precisely
quantifies these design goals as optimization objectives. The method of gt-
synthesis is then applied, yielding a controller that realizes the objectives. The
effectiveness of this control design is illustrated via its implementation in the
M256E1 Long Gun demonstration vehicle. Test results of the new controller
are compared with a "classically" tuned controller.

1 INTRODUCTION

In order to address future needs for improving the lethality of the M I A2 main battle tank,
the army has funded a demonstration program to integrate a longer gun tube. The long tube is
based on the German L55 tube, made by Rheinmetall, and is 4.3 feet (1.3 m) longer than the
conventional M256 120 mm gun tube. Unfortunately, with the increased length comes increased
flexibility, which, if not addressed properly, can introduce significant accuracy degradation when
firing on the move.

It is the job of the stabilization system to maintain proper aiming of the gun when the
vehicle is moving. In order to address the increased demands made on the stabilization system
due to the longer gun tube, a new approach to stabilization design has been investigated. The
method is from the area of robust control, called y -synthesis, and requires an accurate model of
the system dynamics. The goal is to use the system dynamics to derive a design model that
allows control design objectives to be quantified via its inputs and outputs. Once this is
accomplished, the y -synthesis optimization framework can be directly applied to obtain a
controller that achieves the design goals. In order to mitigate risk and facilitate evaluation of the
new method, a classical stabilization scheme has also been developed. The two approaches are
compared in Section 5.3.

The primary goal of this paper is to introduce the general design concepts and summarize
how they are applied to the gun stabilization problem. Due to space limitations and program
sensitivity, information regarding the modeling details, as well as specific quantitative system
properties and performance numbers have been omitted.
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2 ELEVATION DYNAMICS

The elevation model framework is shown schematically in Figure 1.

f 0

It RIGID TURRET STRUCTURE

FIGURE 1: ELEVATION SYSTEM MODELING SCENARIO

The "input" quantities are:

Tf = Trunnion friction torque (in-lb)

6T= Rotational turret motion (rad/sec)

YT = Translational turret motion (in/sec 2)

,= Gun rate command (rad/sec)

and the "output" quantities are:

'm = Muzzle angle (rad)

= Trunnion angle (rad)

ýgyro = Gyro angular rate (rad/sec)

P = Hydraulic pressure (psi)

The gun tube model assumes small angles and point masses. Flexibility is introduced by
constraining the motion of the point masses via three bending modes, which are obtained from
mass and stiffness distributions, using "pin" constraints at the trunnion and actuator connection
points. This yields an 81h order gun tube model. The hydraulic actuator is driven by a flow
command, which is equivalent to the gun angular rate command, 6, that opens a valve to port

oil from one side of the piston to the other. Hydraulic leakage and first order oil compressibility
dynamics are also accounted for in the actuator model. A pressure difference across the piston is
thus generated, resulting in a force applied to accelerate the gun. To account for the unbalance
of the longer tube, the elevation mechanism is equilibrated. This is modeled as a simple pressure
source that sums with the actuator output to provide the total actuator force on gun. Nonlinear
effects considered in the model are trunnion friction and hydraulic loading. This modeling

50



scenario is described more precisely via the block diagram shown in Figure 2. Detailed
development of this model is given in [1]

(3RD mORD1R)PSENS ORDSIG NA

GUN DYNAMICS PR0

((S ORDE))

FIGURE 2: BLOCK DIAGRAM MODELI OF ELEVATION SYSTEM

The time varying gain, KhydtI is defined via

Khyd { . flaP/PxI, tn md_ !r

and models hydraulic loading effects (Ps is the supply pressure). For reasons that are described

in Section 3.3, it is convenient to rewrite the hydraulic nonlinearity as an actuator perturbation.
The equivalence is shown in Figure 3, where dac Kilyd -1, and the perturbation input and

output are defined as qput and pa,, respectively.

qact Pact

(A) (B)

FIGURE 3: (A) HYDRAULIC NONLINEARITY (B) EQUIVALENT PERTURBATION FORM

The nonlinearity N, is a simple trunnion bearing coulomb-type friction model, defined as

Nf = Tfmax, 2- tan-' S4ý,

where Tf max is the friction magnitude, and S is a "shaping" parameter for adjusting the sharpness

of the transition of the friction nonlinearity about zero relative velocity. Combining Figure 2 and
Figure 3, the gun system interconnection is redrawn in simpler form in Figure 4, providing a
concise input-output view of the plant.
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FIGURE 4: ALTERNATIVE BLOCK DIAGRAM VIEW OF ELEVATION SYSTEM (OPEN LOOP)

The vector variables yf, and y, are introduced to represent the feedback and
feedforward sensor signals, respectively, which are sent to the controller. The feedback vector is
defined as:

Hrsiw4?t 1
Yb =H goyro (1)

HAA P

where the variables Ho denote relevant filtering dynamics applied to the respective physical

quantities. In the case of the trunnion and gyro feedback signals, the sensor dynamic is used,
whereas for the pressure feedback, the software anti-alias filter is used because this dynamic
dominates the sensor dynamic. The feedforward vector for the long gun system is:

yff = (2)
1H AAYTI

The use of an accelerometer feedforward sensor has been shown to be advantageous when
stabilizing out-of-balance armaments [2].

It is important to note that the nominal gun plant, P, is a linear system. The
nonlinearities are shown explicitly, and enter the system as perturbations. This input-output
view of the gun system shown in Figure 4 is a very convenient means of depicting this system,
since it puts primary focus on the fundamental linear system behavior while maintaining
nonlinear fidelity. More importantly, this framework facilitates the use of modem robust control
methodologies, where a linear controller is designed to meet objectives that include nonlinear
effects. This is the subject of the next section.

3 ROBUST CONTROL FRAMEWORK

The formulation of a control design problem using tools from robust control theory
requires the system to be put into a standard framework. To this end, consider Figure 5, which
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depicts the nominal linear plant system, P (from Figure 4), connected to the controller, K, and
perturbations Sac, and Afb

8act

0T P

YT --- A p

0, Yfb

FIGURE 5: CLOSED LOOP SYSTEM

Note the trunnion friction, Tf, is now viewed as an external disturbance, along with the terrain

inputs, OT and YT. The nonlinear feedback that generates Tf (see Figure 4) is thus neglected.
This simplification has proven to be a reasonable assumption, since the trunnion friction is
typically small and its effect is primarily in increased errors, and not in any more complicated
nonlinear phenomenon such as limit cycling or instability. Finally, the feedback connection is
augmented with measurement noise input vectors, nf and nfff, and a diagonal matrix

perturbation, Afb. These modifications are necessary when using optimization-based techniques

for control design, so the resulting controller is not overly sensitive to measurement noise, and
robust to nonlinearities and modeling errors; details are given in the remaining development.

The first step in formulating a robust control design is to group the signals of Figure 5
into three sets of vector input/output signals: 1) Controller variables, u and y, 2) Performance

variables, z and w, and 3) Robustness variables, p and q. These standard signals can be

defined for any control problem; the task of the design engineer is to choose them wisely so that
a meaningful controller optimization problem can be formulated. Once these signal sets are
defined, the Figure 5 can be redrawn in the standard robust control block diagram shown in
Figure 6(A), where the controller, K, and combined perturbation matrix, A, defined in Figure 6
(B), are connected to the so-called "design plant," Pd [3].

53



A
p q

W 1 0-Z A [act Ab

(A) (B)

FIGURE 6: (A) STANDARD ROBUST CONTROL BLOCK DIAGRAM (B) DEFINITION OF A

Descriptions of the three signal sets are now given, along with the choices made for the current
gun stabilization problem. Following these definitions, the robust control design goals will be
formulated in terms of this standard framework.

3.1 Control Variables

The control variables, u and y, represent the actuator input and sensor output signals,
respectively, and define how the controller, K, connects to the system. In the MIA2 system, u is
simply the gun rate command, 6,. The sensor vector, y, consists of all signals available to the
controller, and is defined as follows:

Y = [Y, +nfb + pfb
yff + nff

where yfb and yff are from (1) and (2), respectively, and nfm, nff, and pfb are from Figure 5.

3.2 Performance Variables

The performance variables, w and z, represent, respectively, the external system
disturbances, and the signals which are required to remain small in the presence of such
disturbances. The input vector, w, is a vector of all modeled external influences on the plant.
Typical elements of this vector include disturbances, noise, and reference commands. This can
be thought of as a vector of "generalized" disturbances, and is often referred to in the literature as
the exogenous inputs [3]. The performance output vector, z, often called the regulated
variables, is defined such that all control system performance objectives are captured, where
each component in z is chosen such that "smaller is better." For the current stabilization design
framework, these variables are chosen as follows:
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Tf

wg =YrZ= (3)
[d]19T [e]~

nfbc

nff

where the notation _ is used to denote a redefinition of the performance variables in a more
detailed form. Specifically, the w vector is generically partitioned into disturbance and noise
(vector) components. The reason for such a distinction is primarily in the frequency content of
such signals. Disturbances occur typically in lower, operational frequency ranges, whereas noise
signals typically have higher frequency content. For the current system, the friction and terrain
components are natural choices for the disturbance vector d. The two sensor noise components
are grouped into the noise vector, n. The z vector is generally made up of an error component, e,
and an actuator command component, u. This reflects the practical control design principle that
performance be achieved (e.g. small "errors") without excessive actuator effort, due to physical
system limitations. For the current problem of muzzle stabilization, e is simply defined as the
muzzle angle, and u is the gun rate command, 0,.

3.3 Robustness Variables

When applying optimization-based design algorithms, it is critical to include robustness
considerations to account for system perturbations and modeling errors. The robustness
variables can be thought of as a way to introduce conservatism in the design by preventing over-
optimization that would occur by assuming that the model is perfect. Alternatively stated from a
classical control design viewpoint, designing for robustness is a way to design in stability
margins. The goal of this section is simply to establish the "hooks" in the design framework that
will later be used to provide for design robustness. The specific manner in which these variables
are used to address robustness issues is described in Section 4.2

As alluded to in Figure 5 and the accompanying discussion, robustness issues are
addressed by inserting perturbations into the linear closed loop system, in order to account for
discrepancies between the linear model and the true physical plant. Recall multiplicative
perturbations are inserted into the actuator path via 3act and each sensor path via Afb. The

combined perturbation matrix, A, is thus a 4x4 diagonal matrix containing the individual
perturbations. For notational simplicity, the perturbations will be denoted as 3,, i = 1... 4, where

6l = 4act and 62' 53 'and 64 represent the sensor perturbations in the position, feedback gyro,
and pressure channels. Furthermore, these perturbations are complex-valued, and thus account
for model discrepancies in both magnitude and phase. Finally, in the remaining development,
the perturbations are normalized to unit magnitude, with their sizes specified explicitly via
weighting parameters, Wq, . The structure of the individual perturbations is shown in Figure 7.
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FIGURE 7: MULTIPLICATIVE PERTURBATIONS

It should be noted here that the wq, parameters can be frequency dependent; this is useful since

model uncertainty is typically small at low frequencies and increases in size at high frequencies.
Using the notation of Figure 5, this perturbation framework gives rise to the following
assignments for the general robustness variables p and q:

E -Pact ] q=act 1
LPfb LYtbJ

4 ROBUST CONTROL DESIGN SPECIFICATION

The manner in which the above framework is used to specify control design objectives is
now described. The goal of the design is to achieve robust performance. Such a design involves
optimization criteria that address performance and robustness issues. The method in which
performance is specified is described in Section 4.1; Section 4.2 describes the robustness
framework. Finally, Section 4.3 describes how both design goals are combined into a single
design specification via the concept of /u. See [4] for more details on the concepts presented
here.

4.1 The H- Performance Criterion

Using the signals defined in Section 3, performance can be concisely quantified via the
linear relationship shown in Figure 6 from w to z, denoted H, Since z and w are vectors, H, is
a transfer matrix. Note that this relationship is a function of the controller, K. Therefore, K can
be thought of as the optimization variable that must be chosen to make H, "desirable," in some
sense.

The precise specification of performance with H,. requires the performance inputs and

outputs to be normalized. This is necessary in order to capture order of magnitude in the vector
components that exist because of 1) unit differences, 2) typical sizes of the exogenous inputs,
and 3) relative importance, or penalties, of the regulated variables, normalized such that zero
represents no importance and 1 represents maximum importance. When considering issue 3) it is
typical to frequency weight these penalties, because in practical control problems, performance
objectives are often emphasized differently at different frequencies. A typical example is that
goals such as disturbance rejection and reference tracking are important at low frequencies,
whereas noise rejection and robustness to modeling errors are more important at high frequencies
(the latter is due to the fact that models eventually break down at high frequencies).
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The above described normalization is accomplished by cascading input and output
weightings, WJ, and Wz, to the standard block diagram, shown in Figure 8, where it also shows,

via dotted lines, the focus of performance specification in the general framework (i.e. p and q

are not considered).

FIGURE 8: PERFORMANCE SPECIFICATION FRAMEWORK

Observe that 14w and Wz are partitioned according to the structure of the input and output

performance vectors given in (3). Also, the weighting matrices have a diagonal structure, which
has the effect of multiplying the ith component of its input by the (i,i) th element of the weight

matrix, as follows:

wTf 0 0

Ih:-O-,KSI= o0 j.1 .... •- 0 ,w,,~jt (4)

0w,, 0

o i0 w,+

The method used to choose these parameters is described in the Section 5.1. The transfer matrix
providing the desired performance specification can now be written, relating the normalized
exogenous input vector, i,, to the normalized regulated variable vector, 2 :

n-- = zz,. (5)

Since (5) describes a generalized disturbance rejection problem (i.e. smaller is better), a
mathematical concept of the "size" of this transfer matrix is needed which will precisely quantify
the level of disturbance rejection. To this end, consider the maximum singular value of the
(complex-valued) matrix H•+(jco), denoted cY(H• (jco)), defined as:

<• H+(fl))= max IV'5;(Jw)wII
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where i7 is a complex-valued vector, and jixil = x*x is the standard Euclidean norm measure for

a complex vector, x. Note for the scalar case, 5(h(jao)) = h(jo)). The maximum singular

value can be interpreted as characterizing the maximum amplification of sinusoidal input
vectors, as a function of frequency, and is a generalization of the scalar concept of the frequency
response of a transfer function. Given this frequency response concept for H•,,, the desired

measure of its size is given by the -c -norm, defined as:

IHIL = max d;(HO (jo))

The above criterion provides a single number based on the overall transfer function frequency
response, H•,. (jow), to optimize against. Software to compute the maximum singular value and

the - -norm is available in many mathematical analysis packages, including Matlab and Xmath.

4.2 The /p Small-Gain Robustness Criterion

Any practical control design must be resilient in the face of uncertainty in its operating
environment. Physical reasons for system uncertainty include component tolerances and
degradation due to aging. These tolerances give rise to vehicle-to-vehicle variations that must be
addressed when designing a single controller for a fleet of vehicles. Uncertainty must also be
accounted for when using model-based robust control design approaches, due to the fact that
even in the best conditions, the plant model used in the optimization is not perfect. It is thus
necessary to account for unmodeled dynamics, which are typically small at low frequencies and
increase at higher frequencies. In fact, it is this latter aspect of uncertainty that is the focus of the
current work, since the goal is to design a controller for a one-of-a-kind demonstration vehicle.
The purpose of this section is to establish precisely the properties that the closed loop system
must have to ensure stability in the presence of uncertainty.

Recall from Section 3 that perturbations are inserted into the model to address robustness
issues. In this work, robustness is quantified via a key result known as the small-gain theorem.
In its simplest form, the small gain theorem states that for all single perturbations, 6i E C,

satisfying the magnitude condition 1i I < 1 (see Figure 7), the system will remain stable if the

following c -norm condition holds:

11Wqn, H,,,1 < 1 (6)

Alternatively, in terms of a design requirement, since Hq, p, is a function of the controller, K

should be chosen such that

Hqjp , (ij < ,Vt) (7)
wI (j()

It is seen from (7) that the inverse of the perturbation magnitude serves as an upper bound on the

frequency response magnitude function, Hq, (j(o) . Therefore, by examining the four bode
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magnitude plots Hq, p, (jo) ,i =1.. .4, designs can be compared with respect to the relative

robustness of each controller path. These four plots will serve as the primary means of arriving
at the robustness weightings in the design problem; the details are given in Section 5.2.

Note that the above analysis provides a loop-by-loop stability analysis. This is analogous
to determining classical gain and phase margins by "breaking the loop" at the actuator and
feedback sensors, one at a time. In order to evaluate and design for robust stability in the
presence of all perturbations appearing simultaneously, further analysis is needed. To this end,
consider Figure 9(A), which explicitly shows the normalized perturbation structure introduced in
Section 3.3 (see Figure 7) in the standard framework. The scope of the robust stability problem is
also shown via the dashed box (i.e. w and z are not considered).

I .60 0 0 0

W I 0 0 0 6
1 0 0 0 0

Sw 0 w% 0 0
[0 0 wq 0

0 0 0 wq,

Hqp(K)

(A) (B)

FIGURE 9: (A) NORMALIZED PERTURBATION STRUCTURE (B) DETAILS OF A AND W,

The matrix W, combines the individual perturbation weights, wq, , in a diagonal matrix
I

corresponding to the diagonal structure of A. These matrices are shown in Figure 9(B). The
diagonal matrix structure captures the decoupled nature of the perturbation model, i.e.,
perturbation ci

5 only influences the ith channel

The goal is now to obtain a condition on the matrix transfer function Hqp(K) that
guarantees stability in the presence of all four perturbations. A direct generalization of the single
perturbation condition (6) is the small-gain condition

jWKHqp 1 < 1 (8)

This stability result does indeed address the case of multiple perturbations, however, the
perturbation matrix in this formulation is assumed to have a full structure, as opposed to the
diagonal structure of Figure 9. Therefore, any stability assessment made using (8) will be
unnecessarily conservative. Imposing such a condition on the design will result in severely
compromised performance. Because of this issue, it is desirable to have a stability measure
which takes into account the diagonal structure of the perturbation matrix.

To address the issue of conservatism when dealing with a system perturbation matrix
having an inherent diagonal structure, the concept of /j was developed. Only a basic result from
the theory of yu that is relevant to the current problem will be presented here. For more
complete details, see [4] and the references therein. The result needed generalizes the small gain
condition (8) to accommodate the fact that the perturbation has a diagonal structure, as follows:
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lWqHqp 1 =max y (Wq (jGJ)Hqp (iw)) <1

where the function I is a generalization of the maximum singular value, and is taken with respect
to the specific diagonal structure of A. Thus /u provides a new notion of matrix size that applies
specifically to a complex matrix (e.g. a frequency response matrix) connected in a feedback
configuration to a block diagonal matrix. Maximizing g over frequency provides the desired
measure of system size, and provides a non-conservative stability criterion for systems with
multiple complex uncertainties.

4.3 Combined Performance and Robustness Design Framework

The development of the previous two subsections is summarized in the block diagram of
Figure 10.

'u yI

H(K)

FIGURE 10: SUMMARY OF ROBUST PERFORMANCE DESIGN FRAMEWORK

In this view, all weighting functions are explicitly shown. These parameters represent the
designer's "tuning knobs," which allow various control design tradeoffs to be explored. Both
performance and robustness objectives introduced in the previous subsections can be combined
into a single framework using p. This is known as the "robust performance" problem, and is
obtained by first combining the performance and robustness inputs and outputs:

The corresponding combined input and output weights are:

W." =-['p 0 ]v, Wzw = Wq O0

where I4, is a pxp identity matrix. The combined robust performance criteria is:

W11KHWý, 1 U < 1 (9)

with y taken with respect to the following augmented uncertainty structure:
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A = , A0

where A, is the diagonal uncertainty structure of Section 4.2, and Apedf is a complex valued
matrix having as many rows as elements in w, and as many columns as elements in z.

5 DESIGN RESULTS

The Matlab Mu Analysis and Synthesis Toolbox provides routines to design a controller
based on an iterative reduction of the left side of (9). The output of this design algorithm is a
state-space system, i.e. a system defined by the following equations:

S=Ax + By

u=Cx+ Dy

where x is the state vector, x is the time derivative of the state vector, y is the sensor vector, and
u is the controller output. The variables A, B, C, and D are appropriately dimensioned matrix
parameters that define the controller. The computational complexity of the controller is
determined by the size, or order, of the state vector, x. Larger state vectors require more
computation from the processor. Note the square matrix A dominates the computational burden;
since the number of elements in this matrix increase in a manner proportional to the square of
the number of states. A property of the y-synthesis design algorithm is that it produces
controllers having the same number of states as the design plant, which is the number of states of
the plant dynamics plus the number of states in all the design weighting parameters. Because of
this, model reduction techniques are commonly applied, which can decrease the number of states
quite dramatically. Following this reduction, the controller is converted into a discrete-time
system for implementation on the target hardware. This yields a controller of the form:

xK,.I = Arxk +BTy,

Uk = CTxI +DT Yk

where k is an integer sample index assuming a sampling time of T, and AT, BT, CT, and DT are the
controller matrices which are implemented in the vehicle processor.

As described in the previous section, a robust control design in the current framework is
equivalent to specifying the design weighting parameters Wz, Ww, and Wq. Sections 5.1 and 5.2
describe the choices made for these design parameters. Section 5.3 compares the bump course
stabilization performance of the p-synthesis controller with a classically tuned controller.

5.1 Performance Design Weights

Recall that defining performance is equivalent to defining the weighting matrices, W1,, and
W1, defined in (4). Consider first the disturbance component, Wd. Its friction term, wT , is

chosen as the typical trunnion friction level for an MlA2 vehicle. The terrain disturbance terms,
wT and YýT, are chosen as the typical rms statistics for a bump course run. It was found that the
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design is not particularly sensitive to the choices of these scaling parameters; their main function
is to establish general order-of-magnitude differences in the signal values.

The second component of Ww, W,, represents the approximate contribution of sensor

noise to the feedback and feedforward signals. This can be viewed as a specification that the
control design should not amplify sensor noise, which can arise from the finite resolution of the
sensor, as well as the noise floor of the electronic hardware. This set of parameters can thus be
interpreted as containing information regarding the accuracy of each sensor. For the M1A2
system, these parameters are chosen as follows:

1Oxl0- 6s
0 0

s + 27r(100)

W [wf1J 1 0 10- 0 00,-I o ,,wf] 0 0 10
_F - - - - - - -

0 10-' 0

0 0.02

Note that for the resolver feedback of the trunnion position error, it must be assumed that there is
no dc noise component (i.e. a position offset) because it would be impossible to reject, due to the

fact that positional information is not contained in any other sensor. A first order high-pass filter
is therefore used to eliminate such a noise component from consideration.

The performance output weighting matrix, Wz, is now chosen. The weighting functions

in W, provide the means of specifying the performance objectives of the control design. This is
in contrast to the input weight W,,, which is used simply to establish general signal magnitudes.
A natural starting point for obtaining the muzzle error weighting, we, is via the M1A2 rejection

ratio specification, R(o) , which is a stabilization performance bound defined as follows:

PSD(O,).< R(wO)
PSD(OT)

In the context of the design framework of Figure 10, the rejection ratio can be interpreted as a
bound on the magnitude of Hed as follows:

[H, (jco)l < R(o)), V'0•

This expression can alternatively be stated in the form of a robust control performance
specification as follows:

max [R-'(oJ)Hed(jo1)] = fIR-'Hd <1 (10)

Therefore, R-' (o) can serve as a starting point for determining the performance weight, we.
Since the rejection ratio specification is conservative from a design standpoint, iterations on w,
are necessary to further refine the performance specification. Specifying higher levels of
performance (i.e. smaller muzzle error) requires a larger performance weight, i.e.
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w5(jco) > R-I(co)

The final choice for We was arrived at via trial-and-error design iterations, and is depicted via a
plot of the product we (joJ)R(o)), shown in Figure 11.

18 .... ..

17

16-

~-14

13.

12 \ . . ....

1 1 . .. . . " . . . . . .

10 -

10 10 10,
Frequency (HzJ

FIGURE 11: NORMALIZED PERFORMANCE SPECIFICATION PLOT

A normalized view of the performance specification is necessary due to the sensitivity of the
underlying M1A2 performance requirement. In this plot, 0 dB indicates the performance
specification is exactly consistent with the rejection ratio. Larger values represent a more
stringent specification.

Finally, the actuator weight, w,, is chosen. This specification is an upper bound on the
actuator authority used by the controller, and must be chosen based on the capabilities of the
physical system. It is typically chosen so that the controller uses as much of the usable actuator
authority as possible, to maximize performance. Furthermore, it should ensure that the controller
commands roll-off at high frequencies. For the current M1A2 system, this parameter was chosen
to be:

W, =0. 56Ls//0+i], CO, = 2r(200),(, = 27c(10 4 )

Note w,, is a lead-lag filter that ramps up at 200Hz to enforce a roll-off property. The 10 kHz
leveling off is due to a technical requirement of the optimization software that all weighting
functions be proper.

5.2 Robustness Design Weights

In any control design problem, a fundamental tradeoff exists between performance and
robustness. Therefore, a key design goal is to provide the minimum robustness required by the
system in order to maximize system performance. Recall that in the current setting, robustness is
addressed via the frequency-dependent weighting parameters, w,, which focus the RI-synthesis
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optimization on robustness to the ith multiplicative uncertainty. Since an uncertainty is, by
definition, not well known, these parameters must be chosen carefully. Ultimate determination
of robustness parameters must be made in conjunction with vehicle testing. The purpose of this
section is to establish the method used here to guide the selection of the robustness weights.

In addition to their interpretation as a frequency-dependent characterization of the
uncertainty magnitude, the robustness weights can alternatively be viewed as frequency-
dependent "design knobs" - larger magnitudes increase optimization focus on the robustness
objective. Typically this involves trading off performance in that frequency range. As described
in Section 4.2, the robustness of the individual feedback loops can be evaluated via the four

plots, Hqp( j(o),i =l .. .4. Using these plots, the following iterative procedure was used to

arrive at the robustness weights:
1) Start with w q, =0, i=1...4.

2) Perform it-synthesis to generate a controller
3) Compare the resulting closed loop properties to that of a "reference" system, Href

a) Plot the robustness plots Hqipi (j)) ,i =1... 4, for both control systems

b) Plot the performance plot d[WK(jo))Hz,(jo)W (jo)] for both control systems
4) If the plots from 3a and 3b are desirable, then proceed to simulation and implementation;

else introduce/modify wq, according to the general guidelines of Section 4.2
5) If the implementation exhibits problems such as instability or resonance,

introduce/modify wq, as necessary according to the general guidelines of Section 4.2

For this project, the controller used as Href varied throughout the study. Initially, it was the
nominal M1A2 closed loop system, since it is known to have good performance and robustness
properties. Once hardware was available, Href was the most recent controller iteration. Bode
magnitude plots for wq,,i=1...3, are shown in Figure 12, while wq, =0. The frequency

dependence of the weighting functions has been utilized to tailor robustness around problem
frequencies in the system.
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FIGURE 12: ROBUSTNESS DESIGN WEIGHTS
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5.3 Bump Course Test Results

Application of the /2-synthesis design routines yielded a 4 7th order continuous time
controller. Subsequent model reduction and discretization resulted in a 2 2nd order digital
controller implemented on the MlA2 system. The stabilization testing shown here was carried
out at Aberdeen Proving Grounds, using RRC-9 bumps with a vehicle speed of 10 mph. To
evaluate the performance properties of the robust control design and gain the most insight
possible, a classically tuned stabilization design was also developed for the long gun system.
The details of the classical design will not be given; however, the fundamental difference in
philosophy between the two approaches is simply described. Namely, the performance objective
of the classical control design is to maintain small trunnion-pointing error, as measured by the
gun-trunnion resolver, whereas the performance objective of the robust control design is to
maintain small muzzle-pointing error. The model-based nature of the robust control design
makes it possible to optimize the design goal about a quantity that is not sensed. The key
comparison is shown in Table 1, where the terrain disturbance and gun response RMS statistics
are compared for each controller.

TABLE 1: ROBUST CONTROLLER BUMP COURSE RMS STATISTICS (RELATIVE TO CLASSICAL DESIGN)
TERRAIN DISTURBANCE GUN RESPONSE

TRUN ERROR MUZZLE ERROR
FF _ACCEL( YT) FF GYRO( r) (T) M

A% 13 9.6 94 -8.1

To convincingly illustrate the muzzle performance of the robust controller, bump course runs
were chosen where the terrain disturbances are larger for the robust controller. The most striking
difference in the gun response statistics is in the trunnion response. Namely, Table 1 shows that,
relative to the classical controller, the robust controller achieves an 8.1% reduction in the muzzle
error with a 94% increase in the trunnion error. This behavior is somewhat counterintuitive,
however, it is consistent with the robust control problem formulation since the performance
variable in the y -synthesis optimization contained the muzzle angle and not the trunnion angle.

Additional insight is obtained by comparing the power spectral densities (PSD's) of the
above signals, shown in Figure 13. The small trunnion error of the classical controller is evident
across all frequencies. The muzzle behavior, however, is interesting in that the classical
controller response exhibits peaking at 10 Hz. The modem controller does not excite this
frequency at all. In fact, analysis has shown that muzzle vibration can be excited as a result of a
high bandwidth trunnion loop, such as that in the classical controller [5]. Therefore, the robust
control design has provided a means of obtaining small muzzle errors without a high bandwidth
trunnion loop; such a solution would not have been found using conventional design techniques.
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FIGURE 13: POWER SPECTRAL DENSITIES OF GUN RESPONSE

6 CONCLUSIONS

This work has demonstrated the feasibility of using a model-based optimal control design
methodology for gun stabilization. This approach is characterized by specifying desired closed-
loop performance and robustness objectives. This is an attractive design paradigm, focusing on
the higher level issue of what to do, instead of how to do it. The latter issue is addressed in an
automated fashion via the optimization process. However, selection of the frequency weighting
parameters is, in general, non-trivial, and must be done with care. Specifically, since the
performance and robustness objectives relate to desired closed loop performance, it is possible to
specify levels of performance and robustness that are not simultaneously achievable by the
system. In such a case, either the design optimization algorithm will not converge, or the
resulting design simply will not meet the objectives. Thus the design difficulty lies in gaining
experience in understanding how best to translate the physical design objectives into the
performance and robustness weighting parameters. This has been achieved here using a
combination of simulations and vehicle testing. Once the general principals are established,
more design work can be done via computer simulation, which greatly reduces development and
testing expense.

REFERENCES

1. V. R. Marcopoli, Independent Research and Development Report, General Dynamics Proprietary
Information, 1999.

2. D. J. Purdy, "Comparison of Balanced and Out Of Balance Main Battle Tank Armaments," Proceedings 9 ih

U.S. Army Gun Dynamics Symposium, 1999.
3. S. Boyd and C. Barratt, Linear Control Design - Limits of Performance, Prentice-Hall, 1991.

4. G. Balas, J. C. Doyle, K. Glover, A. Packard, R. Smith, p-Analysis and Synthesis Toolbox, The Mathworks,
1995.

5. J. Freudenberg, Independent Research and Development Report, General Dynamics Proprietary
Information, 1999.

66


